If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-22x-120=0
a = 7; b = -22; c = -120;
Δ = b2-4ac
Δ = -222-4·7·(-120)
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3844}=62$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-62}{2*7}=\frac{-40}{14} =-2+6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+62}{2*7}=\frac{84}{14} =6 $
| X÷9-2=x÷7 | | (3x)+(5x+8)=180 | | y-17=15 | | 28-16x=-116 | | 3x+16+11x−18=360° | | 3/5x+8=2 | | 5x-2x=2x+6 | | –9n+7=–10n | | 10u=20+5u | | 155=(4x-11) | | 4n-1=+14 | | x-8=7x-14 | | 1/5t+4=8 | | 1x+2=+8 | | 5x+9=-x+69 | | -8-7n=-57 | | r+10/r=-11 | | 5(5-7x)=10-2(4x-6) | | 0^2+b^2=5^2 | | 5-x/8=-11 | | 56+3x-1+8x=180 | | (5x+2)(4x-3)=0 | | -4a-1=23 | | 4n2-16n+15=0 | | 7(c+5)=28 | | 3x+(5x+8)=180 | | 16f-6=42 | | 5−–w=8 | | 5x-2x=-45 | | h+5/4=11/14 | | p=–p+8 | | 12=m/3-3 |